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Abstract: Vegetation canopy interception (Ic) of precipitation is a considerable component of the
global hydrological cycles. Although the measurement and modeling of canopy interception have
been explored worldwide at the individual, stand or ecosystem scale, it is still unclear how to
recognize this process at the regional or global scales within the context of global climate change. In
this study, a revised Gash model was employed to estimate canopy interception based on remote
sensing and meteorological data. The spatial and temporal variations in Ic were investigated and the
main environmental factors were explored in China for the 2000–2018 period. The results showed
that the revised Gash model performed well in modeling canopy interception at the regional scale
compared with the PML_V2 dataset product and the in-situ measurements. The average annual
Ic in China from 2000 to 2018 was 166.55 mm, with a significant decreasing spatial pattern from
the Southeastern to the Northwestern regions. The ratio of canopy interception to precipitation
(Ir) displayed a similar spatial pattern, with an average value of 22.30%. At the temporal scale,
the mean annual Ic significantly increased at a rate of 1.79 mm yr−1 (p < 0.01) during the study
period, and the increasing trend was more pronounced during the 2000–2009 period, at a rate of
3.34 mm yr−1 (p < 0.01). In most vegetation types, except for the deciduous broad-leaved forest and
temperate desert, canopy interception showed a significant increasing trend (p < 0.01). Precipitation,
temperature, and the normalized differential vegetation index (NDVI) were considered to be the main
factors affecting the variations of Ic in China during the last two decades, with specific dominant
factors varying in different areas. Specifically, precipitation was considered to control the variations
of Ic in the Northwestern regions, temperature mainly influenced the Southern regions, and the
NDVI was identified as the main factor in regions where significant ecological conservation projects
are established, such as the Loess Plateau. Our findings are expected to not only contribute to
the understanding of regional ecohydrological cycle but also provide valuable insights into the
methodology of interception modeling at the regional and global scales.

Keywords: canopy interception; revised Gash model; remote sensing; vegetation types; China

1. Introduction

Vegetation canopy interception is the process by which gross rainfall falling onto
plant surfaces is captured, stored, and subsequently lost through evaporation from the
canopy [1]. This process represents water loss from ecosystems and water gain for the
atmosphere, and as such it plays a critical role in regulating the global hydrological cycle
and land–atmosphere interactions [2,3]. It has been widely reported that canopy inter-
ception accounts for more than 20% of the gross rainfall across biomes globally [4], even
exceeding 40% in some forest-covered regions [5,6]. In addition, canopy interception is also
the main component of evapotranspiration, with proportion values frequently reaching
up to 50% in many ecosystems [7]. Despite its importance, vegetation canopy interception
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has been traditionally simplified as an underestimated constant or even overlooked in
many hydrological models [2], leading to great uncertainties in the modeling results and
limiting our understanding of regional hydrological processes. Therefore, how to quantify
the magnitude of canopy interception across different vegetation biomes has become an
important scientific issue in ecohydrological studies in recent years [8–10].

Field observations and model simulations are two commonly used methods to esti-
mate the canopy interception of vegetation. The first allows the calculation of interception
from the in-situ monitoring throughfall (TF) and stemflow (SF) based on the water balance
model, as Ic = P-TF-SF (where P is gross rainfall or precipitation) [11]. Because of its easy
operability, the field observation method has been widely used to estimate interception in
almost all ecosystems worldwide [4,12,13]. However, due to the randomness of precipi-
tation and diversity of vegetation, long-term monitoring periods are generally required,
which makes this method time consuming and costly [14,15]. Model simulations have
contributed to addressing this problem, as they allow for estimation of canopy interception
based on the available meteorological variables and vegetation canopy parameters [1,16].
Numerous interception models have subsequently been developed to accurately estimate
canopy interception loss in various ecosystems, such as regression models [17], empirical
models [18], stochastic models [19], and physically based models [9,20–22].

Among them, a simple process-based model proposed by Gash (1979), known as
the Gash analytical model, has been widely applied due to its simple calculation process
and good simulation ability in different ecosystems [1,23,24]. Yet, the original model
usually overestimates canopy interception in sparse forests, as it contains a weakness in the
description of the canopy cover fraction for this ecosystem [21]. A revised Gash model was
therefore reformulated by improving boundary conditions and using evaporation per unit
canopy area instead of per unit ground area [21,25]. This reformulated version of the model
has been verified to have a good performance in predicting interception under various
canopy coverage conditions, from sparse to closed canopy [10,26–29]. However, both the
interception results obtained from field observation and simulation models are mostly
limited to individual, stand, or ecosystem scales, and it is uneasy to upscale these models to
the regional or global scales [30–32]. This limitation does not allow to include interception
into global hydrological models and to consider the spatial and temporal information of
interception within the current context of global change.

With the development of satellite technology, remote sensing has become a powerful
tool to extract spatial and temporal information related to earth surface processes owing to
its vast coverage, low costs, and applicability in ungauged areas [32]. Numerous studies
employed remote sensing to estimate the flux or reveal the dynamics of water [33–35],
nutrients [36], and heat [37] in land surfaces, which turned this tool into a conventional but
indispensable method in global hydrology research. In recent years, increasing attention
has been paid to the application of remote sensing to measure canopy interception at a
large scale. For instance, Wu et al. [38] calculated the vegetation canopy interception of
rainfall in southern China by combining observed rainfall data and leaf area index data
obtained using a moderate resolution imaging spectroradiometer. Ghilain et al. [31] utilized
remote sensing data to forecast canopy interception from an empirical interception model
in Europe, Africa, and South America. Nevertheless, the above-mentioned studies and a
number of other relevant studies mainly inversed canopy interception from remote sensing
data through simple regression relationships or empirical formulas. The integration of
remote sensing data to a process-based canopy interception model from the perspective
of the physical mechanism is still a key technical challenge at present [39]. Although few
studies have attempted to use remote sensing data to run the revised Gash model [30,32],
the coupling of the remote sensing technique and process-based interception models is still
at an early stage, due to the complexity of model parameters and the resolution of remote
sensing products. Hence, there is an urgent need for more relevant studies, especially in
regions with a wide range of vegetation types and high variability, as the model obtained
from these areas have been shown to generally contain more uncertainties.
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China is a vast country with a wide range of vegetation types, including forests,
shrubs, herbaceous vegetation, alpine tundra, marsh and aquatic vegetation, agricultural
and desert vegetation [40]. Due to climate change and ecological conservation projects,
vegetation growth significantly increased in most areas of China since the 21st century [41],
which contributed to a quarter of the global net increase in vegetation coverage with only
6.6% of the global vegetated area [42]. Specifically, the Loess Plateau China, where the
Grain for Green Program is well established, has experienced a distinct increase vegetation
coverage, with the NDVI growth rate reaching 0.008 yr−1 during the 2000–2015 period [43].
The karst area in the Guangxi-Yunnan-Guizhou region in Southwestern China, another
typical area chosen for ecological conservation projects, saw a stronger vegetation greening
trend during the ecological protection period (2001–2016) than during the reference period
(1982–2000), and this trend was influenced by eco-engineering [44]. Therefore, within
the context of these vegetation changes, it is urgent to elucidate how canopy interception
varied in different ecosystems in China during the last two decades in order to understand
the ecohydrological effects of vegetation under the persistent impact of climate change
and ecological engineering. The objectives of this study were to (1) develop and verify
a large-scale revised Gash model running by satellite observation and meteorological
data; (2) investigate the spatial and temporal variations of canopy interception in various
vegetation types in China since the 21st century; and (3) explore the main factors driving
the variations of canopy interception in China.

2. Materials and Methods
2.1. Study Area

China presents a wide range of vegetation types, which are distributed at specific
latitudinal and longitudinal zones. In Eastern China, tropical rain forests, monsoon forests,
and coniferous forests consecutively occur from South to North and, as moisture decreases
from East to West, the vegetation types change from forest, forest grassland, and grassland
to desert. Overall, China is divided into the following eight vegetation regions (Figure 1):
cold temperate coniferous forest, deciduous broad-leaved forest, Qinghai-Tibet Plateau
alpine vegetation, tropical monsoon forest, rain forest, temperate grassland, temperate
desert, subtropical evergreen broad-leaved forest, and temperate mixed forest.

2.2. The Revised Gash Model

The analytical Gash model assumes that rainfall events separated by sufficiently long
intervals and the intercepted water is completely evaporated before the next rainfall [45].
Three phases could be distinguished in each rainfall event: (1) the wetting phase, as rainfall
reaches the canopy; (2) the saturation phase, as the canopy reaches its maximum water
storage capacity; and (3) the drying phase after rainfall has ceased. Then, the model adds
up the canopy interception of each phase to obtain the total canopy interception. The
revised version considers leaves, branches, and crowns as a whole during the estimation of
canopy interception [1,21], and introduces additional parameters, such as canopy coverage
to simplify the calculation. The calculation formula is:

Ij = c ∑m
j=1 PG,i, PG ≤ P′G,i

I j = (ncP′G − ncSc) + c E
R ∑n

j=1 (PG,j − P′G) + ncSc + (qSt + Pt∑
n−q
j=1 PG,j), PG > P′G,i

(1)

where m and n indicate that the vegetation is not saturated for m times and is saturated for
n times of the m + n precipitation events; Ij is the canopy interception of the jth of m rainfall
events; c is the canopy density; q is the number of times that the trunk reaches saturation
and produces stemflow; PG,j is the gross rainfall (mm) of the jth of m rainfall events; Sc is
the canopy storage capacity and Sc = S/c; St is the trunk storage capacity (mm); E is the
averaged evaporation rate (mm/h) and Ec = E/c; R is the average rainfall rate (mm/h); St
is the trunk storage capacity (mm); and Pt is the stem runoff coefficient.
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Figure 1. Vegetation biomes and associated normalized difference vegetation index (NDVI) in China.

Several studies have attempted to develop the remote sensing based Gash model, and
successfully applied it to simulate canopy interception in large-scale regions [30,32,46]. The
calculation formula is: 

Ii = Fvc × PG, PG ≤ P′G,i

Ii = Fvc × PG,i + (Fvc × Ev
R
), PG > P′G,i

(2)

where Ii is the canopy interception of the ith subpixel; Fvc is the vegetation coverage; PG

is the gross rainfall; P′G,i is the rainfall threshold for saturation; Ev
R

is the ratio of the mean
evaporation rate to the mean rainfall rate, which is selected on the assumption that the
evaporation of the saturated canopy and trunk are the same. The calculation formula of
P′G,i is as follows:

P′G,i = −
R
Ev
×

Sveg

Fvc
× ln(1− Ev

R
) (3)

where Sveg is the canopy and stem storage capacity, and it is assumed to be linearly related
to the vegetation area index (VAI).

2.3. Data Preparation

The NDVI data were reconstructed from the moderate resolution imaging spectrora-
diometer (MODIS) products to estimate FVC. In brief, the spatial resolution of the MODIS
NDVI product is 500 m and the temporal resolution is 16 days, with the criteria of low
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clouds, low view angle, and highest NDVI value. The leaf area index (LAI) data-set with a
resolution of 500 m in spatial and 8 days in temporal, respectively, were collected from the
MODIS LAI product (MYD15A2) to estimate the VAI based on Equation (4):

VAI = LAIg + Ls (4)

where LAIg is the leaf area index provided by MODIS LAI product; Ls is the area index
of dead leaves, branches, stem, and trunk. In addition, Ls was estimated according to its
relationship with the LAI as described in Zeng et al. (2002) [47].

The landcover product (MCD12Q1), which contains 17 landcover types based on
the International Geosphere Biosphere Programme (IGBP) classification, was collected to
separate different vegetation types. As these vary, the input vegetation parameters changed
during the model simulation [32,46].

In the present study, 3-h precipitation intensity data sourced from China’s meteoro-
logical forcing dataset, which was supported by the National Tibetan Plateau Scientific
Data Center, were used to run the revised Gash model. The dataset was based on tropical
rainfall measuring mission (TRMM) precipitation data and reanalysis data, such as Prince-
ton reanalysis data, global land data assimilation system (GLDAS) data, and radiation
data from global energy and water exchanges project-surface radiation budget (GEWEX-
SRB), and it integrated the conventional meteorological observation data of the China
Meteorological Administration, which has a better accuracy of 0.1◦ [48,49]. A monthly
potential evapotranspiration dataset from the National Earth System Science Data Center
(http://www.geodata.cn/ accessed on 21 January 2022) was also used to run the model.
The data were calculated using the Hargreaves potential evapotranspiration equation with
a temporal resolution of 1 mon and a spatial resolution of 1 km [50].

The canopy interception evaporation data (Ei) used for validation were derived from
the PML_V2 global evapotranspiration (ET) and gross primary production, which is ob-
tained from the National Qinghai-Tibet Plateau Science Data Center (https://data.tpdc.
ac.cn/ accessed on 24 January 2022) [51]. Based on the Penman-Monteith-Leuning (PML)
model, PML_V2 coupled the GPP process according to the stomatal conductance theory,
which greatly improved the accuracy of the ET simulation. The resolution in spatial and
temporal scale were 0.05◦ and 8 days, respectively. Data from 2003 to 2018 were used for
this validation.

2.4. Data Analysis
2.4.1. Model Validation

The validation of the revised Gash model was assessed by comparing the canopy
interception both with those acquired from the PML_V2 dataset by randomly selecting
400 sites and with the results of in-situ measurements from 53 sites in 35 peer-reviewed
journal articles in China during the 2000–2018 period (File S1). We set the interception from
the PML_V2 dataset or in-situ measurements as the benchmark and employed normalized
root mean square error (NRMSE), the mean relative error (MRE), and determination coeffi-
cient (R2) to assess Gash model’s performance. MRE and NRMSE were calculated using
the following equations:

MRE =
Y− X

X
× 100% (5)

NRMSE =

√
1
n ∑n

i=1 (Yi − Xi)
2

X
× 100% (6)

where Yi is the canopy interception simulated by the revised Gash model, Xi is the inter-
ception obtained from the PML_V2 dataset or in-situ measurement, n is the number of
simulation datasets.

http://www.geodata.cn/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
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2.4.2. Analysis of Canopy Interception Variation

The spatial and temporal variations in canopy interception were investigated by the
Mann-Kendal (MK) test, which is a non-parametric method recommended by the World
Meteorological Organization. This test is frequently utilized to determine the long-term
trend and variation of precipitation, temperature and runoff because it does not need to
obey the same probability distribution [35].

The MK test was calculated using Equations (7) and (8), assuming that the runoff
sequence is x1, x2, x3, · · · , xn. Sk represents the cumulative number of the first sample
xi > xj(1 ≤ j ≤ i) and it is defined as:

Sk = ∑n
i=1 ∑i−1

j=1 sign(xi − xj) (7)

where sign(xi − xj) is a step function. The statistical variable Z is defined as:

Z =



(S−1)√
n(n−1)(2n+5)

18

, Sk > 0

0 , Sk = 0
(S+1)√

n(n−1)(2n+5)
18

, Sk < 0

(8)

where Z obeys a normal distribution. Z > 0 indicates an upward trend, while Z < 0
means a downward trend. When |Z| is greater than 1.96, the serial trend passes the
95% significance test.

2.4.3. Analysis of the Environmental Factors Influencing Canopy Interception

Canopy interception is mainly affected by vegetation characteristics (vegetation
species, canopy structure, etc.) and environmental factors (precipitation characteristics,
wind speed, temperature, etc.) [11,52]. The NDVI can reflect the physiological charac-
teristics of vegetation. Thus, temporal evolution was revealed to identify the impacts of
environmental variables on canopy interception. The stepwise multiple regression analysis
was employed to estimate the relative contribution of each variable to canopy interception,
and it specifically included temperature (T), precipitation (P), relative humidity (RH), wind
speed (WS), solar radiation (SR), air pressure (AP), potential evapotranspiration (PE), and
NDVI. The significance of the multiple regression model was examined by the F-test, which
could be reflected by the determination coefficient R2, and the candidate variables were
selected for the model based on a 0.05 significance level [53]. All data were normalized
before applying the method. The spatial distribution of the relative contributions of these
factors in China was obtained by calculating eight environmental variables to canopy
interception in each pixel using GIS technology.

Finally, the stepwise multiple regression method was applied by setting the normalized
canopy interception as the dependent variable and the normalized environmental variables
as predictors (independent variables). The contribution of each influencing factor to the
change of precipitation interception was calculated using the following equations:

Y = a1X1 + a2X2 + a3X3 + · · ·+ anXn (9)

η1 =
|a1|

|a1|+ |a2|+ |a3|+ · · ·
(10)

where Y is the dependent variable, X1, X2, X3, · · · are the independent variables, a1, a2, a3, · · ·
are the coefficients of this regression equation, and η1 is the relative contribution ratio of
each dependent variable to the variations in canopy interception.
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3. Results
3.1. Validation of the Revised Gash Model

The canopy interception of the revised Gash model displayed a significantly corre-
lation both with the PML_V2 dataset product (r = 0.8, p < 0.01, Figure 2a) and the in-situ
measurements (r = 0.66, p < 0.01, Figure 2b). The points in Figure 2 mainly distributed
around the 1:1 line and the NRMSE were both less than 15%, indicating that simulated
results of the revised Gash model were relatively robust compared to those obtained from
the existing remote sensing products and in-situ measurements.
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3.2. Spatial Patterns of Canopy Interception in China

The mean annual canopy interception in China ranged from 0.98 mm to 1423.47 mm
(with an average value of 166.55 ± 160.61 mm) from 2000 to 2018 (Figure 3a), showing
a significant decreasing pattern from the Southeastern to Northwestern regions. For
example, the highest lowest mean annual canopy interception was measured in the tropical
rainforest (section VIII) and temperate desert regions, with values of 461.1 ± 161.25 mm
and 18.07 ± 22.34 mm, respectively (Figure 4). The ratio of interception to precipitation
displayed similar spatial patterns (Figure 3b), with mean annual values ranging from 0.12%
to 60.21% and an average value of 22.30 ± 11.45%. In contrast, in the cold temperate
coniferous forest region, the Ir was relatively higher, while the Ic was relatively lower.

3.3. Temporal Variation of Canopy Interception in China

The mean annual canopy interception in China significantly increased from 2000
to 2018 (Figure 5), at a rate of 1.79 mm yr−1 (p < 0.01). The increasing trend was more
pronounced during the 2000–2009 period, with rates of 3.34 mm yr−1 (p < 0.01), despite a
decrease down to 1.14 mm yr−1 observed from 2009 to 2018. In terms of seasonal patterns,
canopy interception in summer not only accounted for the largest proportion of annual
interception but it also obviously increased, especially between 2000 and 2009, at a rate
of 2.26 mm yr−1 (p < 0.01). Canopy interception in spring also increased significantly
(p < 0.01), causing a certain impact on annual interception.
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Figure 4. The canopy interception (Ic) and ratio of interception to precipitation (Ir) of eight vegetation
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evergreen broad-leaved forest; V: tropical rain forest; VI: temperate steppe; VII: temperate desert;
VIII: alpine vegetation of Qinghai-Tibet Plateau.
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The results of the MK test (Figure 6a) showed that in many regions canopy interception
displayed an increasing trend during the 2000–2009 period, especially in Northeastern
China and in the Loess Plateau, where the increase was significant (p < 0.01). During the
2009–2018 period, the temporal variations were not obvious, except in Southern China
(Figure 6b), where a significant increasing trend (p < 0.01) was detected.
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broad-leaved forest; IV: subtropical evergreen broad-leaved forest; V: tropical rain forest; VI: temperate
steppe; VII: temperate desert; VIII: alpine vegetation of Qinghai-Tibet Plateau.
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In particular, except for the deciduous broad-leaved forest and temperate desert
vegetation, the other six vegetation types almost displayed a significant increasing trend
(p < 0.01) of canopy interception during the 2000–2018 period (Figure 7I,II,IV–VI,VIII).
Among them, the cold temperate coniferous forest and the temperate steppe showed a
significantly higher increasing rate (p < 0.01) of canopy interception between 2000 and
2009 than between 2009 and 2018 (Figure 7I,VI), while the remaining four types displayed
a significant increasing trend (p < 0.01) during the whole period. Similar with the mean
annual value, the canopy interception in summer dominated the most proportion of the
annual interception in almost all the vegetation types (Figure S1).
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3.4. Environmental Factors Affecting Canopy Interception

The results of stepwise multiple regression analysis exhibited precipitation, NDVI,
temperature, relative humidity, and solar radiation explained 82% of the variance in canopy
interception in China over the past 20 years (Table 1). Among these factors, precipitation,
NDVI, and temperature were the main contributors to the variations, and they were also
significantly correlated with interception based on the partial correlation analysis (Table S1).

Specifically, the spatial distributions of the relative contribution of environmental
factors have been explicitly visualized to show the main factors influencing canopy in-
terception across the entire country (Figure 8). Precipitation was the dominant variable
in Northwestern China, with a relative contribution of over 40% in most of the areas
(Figure 8a). In some regions of Xinjiang Province, the relative contribution of precipitation
reached even 80–100%. The NDVI was the main environmental factor in the Loess Plateau
and some regions of the Tibet Plateau, with relative contribution values approaching
40–60% (Figure 8b). Temperature contributed more than 40% in some Southern regions
of China (Figure 8c). Other factors, including wind speed, relative humidity, and solar
radiation, contributed less than 20% to the variation of interception in most parts of China
(Figure 8d–f).

Overall, the spatial patterns of the dominant environmental factors were obtained to
display which ones affected canopy interception the most in China (Figure 9). Based on the
results, precipitation, temperature, and NDVI were the predominant variables affecting
47.09%, 25.12%, and 16.29% of China, respectively.

Table 1. The coefficients of stepwise multiple regression and associating relative contributions of
environmental factors on canopy interception.

Variables
R2 p

P NDVI T RH SR WS AP PE

Coefficient 0.87 0.22 0.11 −0.04 0.03 — — — 0.82 <0.01Contributions 68.68% 16.97% 8.84% 3.02% 2.49%

P: precipitation; NDVI: normal difference vegetation index; T: temperature; WS: wind speed; RH: relative humidity;
SR: solar radiation; AP: air pressure; PE: potential evapotranspiration.
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4. Discussion

The validation results of the revised Gash model (Figure 2) meant that the model
performed well in estimating canopy interception at the regional scale compared with other
products and in-situ measurements [30,32]. The model results revealed that the Ic and Ir
in China during the last two decades were 166.55 mm and 22%, respectively (Figure 3),
which are in line with the values obtained in previous related studies [54,55]. For example,
Zhang et al. [56] conducted a review study by collecting canopy interception data from 86
studies conducted in 47 different research sites located in China and concluded that the
Ic and Ir were 209.8 mm and 25.5%, respectively. The results published in this paper are
slightly higher than those in present study, which may be due to the scale gaps of different
methods. The interception data used in Zhang et al. [56] was based on rainfall event at
site scale, and thereby analyzed by the meta-analysis method. Moreover, our study found
that the Ir in the coniferous and broadleaved mixed forest in temperate zone of China
was 34.56 ± 6.58%, which was close to the result of Zhang et al. [56] (i.e., 35.00 ± 10.50%).
Despite the slight differences, the simulated results of canopy interception in the present
study were generally in line with those of previous studies.

The results revealed a significant decreasing spatial pattern of the mean annual
canopy interception from Southeastern to Northwestern regions in China (Figure 3).
This pattern was mainly determined by the spatial distributions of precipitation and
vegetation types [4,6]. From Southeast to Northwest, precipitation significantly decreased
with the effect of the monsoon climate [57]. In addition, the vegetation type changed from
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tropical or subtropical forest to temperate steppe or temperate desert (Figure 1), which are
characterized by a sparser canopy structure that can retain less rainwater [58]. A similar spa-
tial pattern was also detected in the ratio of interception to precipitation (Figure 3b), except
for the cold temperate coniferous forest, which exhibited a relatively higher interception
ratio but lower canopy interception. This was mainly because coniferous plants generally
present a higher total plant leaf area due to their needle leaf form [4,59]. Magliano et al. [52]
collected data on 68 woody plant species worldwide and found that the Ir in needle leaf
form was significantly higher than in broad leaf or pinnate leaf forms.

At the temporal scale, the mean annual canopy interception in China increased sig-
nificantly from 2000 to 2018 (Figure 5) at a rate of 1.79 mm yr−1 (p < 0.01). This increasing
trend was most pronounced during the 2000–2009 periods (Figures 5 and 6), with a rate of
1.79 mm yr−1 (p < 0.01). This phenomenon was also reflected in the interception changes
observed in most vegetation types (Figure 7I,II,IV–VI,VIII). For instance, in the temperate
steppe, the increases in canopy interception were significantly more pronounced between
2000 and 2009, but the trend almost stabilized or even decreased during the 2010–2018
period (Figure 7VI). The subtropical evergreen broad-leaved forest and tropical monsoon
forest (Figure 7IV,V), the two vegetation types with the highest canopy interception in
China, also experienced a significant increasing trend of canopy interception. In addition,
Wu et al. [38] estimated that the mean annual canopy interception gradually increased from
2004 to 2016 in Guangdong Province, China.

Our attribution analysis showed that precipitation, NDVI, temperature, relative hu-
midity, and solar radiation could explain 82% of the variance in canopy interception in
China over the last two decades (Table 1). Among these factors, precipitation, NDVI, and
temperature were considered as generally predominant in China (Figures 8 and 9), while
more specifically dominant factors varied depending on the region. In Northwestern China,
precipitation was considered to affect the variation of canopy interception most, with a
relative contribution of over 40% in most of the areas or even reaching to 80–100% in some
regions (Figures 8a and 9). This is consistent with the results of previous studies reporting
that the arid and semiarid regions in Northwestern China have been experiencing an
upward trend in precipitation since the 1990s [60,61]. Such increases in precipitation might
mean that more rainwater could be intercepted by the vegetation canopy as, in these dry re-
gions, canopies do not easily saturate due to the high potential evapotranspiration [62–64].
Temperature was considered as the main dominant factor affecting interception in the
subtropical or tropical forest regions of China (Figures 8c and 9). It has been previously
reported that temperature in Southern China increased significantly since 1998; specifi-
cally, the average daily mean temperature increased by 0.7 ◦C in 2009–2018 compared to
1961–1970 [65]. The elevated temperature would accelerate the canopy’s evaporation rate,
thus improving the interception storage of the vegetation canopy [12,24].

Our results identified the NDVI as another main factor affecting the variation of
interception in China (Table 1), especially in the Loess Plateau (Figures 8b and 9). This
index has been widely used as a proxy to indicate variations in vegetation coverage [66]. It
has been shown that the establishment of a series of ecological conservation projects in the
past decades has contributed to widely increasing vegetation coverage in many regions
of China [41,42,67], especially in the Loess Plateau where the Grain for Green Project has
been implemented since the 1990s [35,68]. For instance, Chen et al. [69] reported that
during the 1999–2013 period, the vegetation coverage obviously increased from 31.6% to
59.6%. Such increases might facilitate the growth of vegetation canopy and enhance canopy
interception of rainwater [70]. Although the NDVI could be used as a good indicator
of regional vegetation changes, many other canopy structure variables still influence the
rainfall interception process, including leaf shape, canopy thickness, canopy surface area,
and canopy forms [11,52,58,71]. Ignoring these variables would limit the accuracy of the
model results for regional canopy interception, therefore they should be considered when
modeling regional canopy interception in future studies.
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5. Conclusions

This study investigated the spatial and temporal variations in canopy interception by
applying a revised Gash model to remote sensing and meteorological data collected in China
from 2000 to 2018. The impacts of the main environmental variables on interception were
also explored. The results showed that the revised Gash model had a good performance in
simulating canopy interception at the regional scale compared with the PML_V2 dataset
product and the in situ measurements. The average annual canopy interception was
166.55 ± 160.61 mm during the 2000–2018 period, showing a significant decreasing pattern
from Southeastern to Northwestern China. The ratio of canopy interception to precipitation
presented similar spatial patterns, with the average value of 22.30± 11.45%. At the temporal
scale, the mean annual canopy interception over the last two decades increased significantly,
at a rate of 1.79 mm yr−1 (p < 0.01), and the increasing trend was more pronounced in the
2000–2009 period, with a rate of 3.34 mm yr−1 (p < 0.01). Except for the deciduous broad-
leaved forest and temperate desert, most vegetation types have experienced a significant
increasing trend (p < 0.01) of canopy interception. The variations of precipitation, NDVI,
temperature, relative humidity, and solar radiation explained 82% of the variations in
canopy interception of rainwater. Among these variables, precipitation, temperature, and
NDVI predominantly controlled the vegetation canopy interception in China during the last
two decades. Overall, the present study successfully applied the revised Gash model at the
national scale and provided direct evidence of the spatial and temporal variations of canopy
interception in China. The results obtained could greatly improve our understanding of the
regional ecohydrological processes and contribute to the development of comprehensive
global hydrological models.
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coefficients between interception and the environmental factors; File S1: A list of selected papers
from which the data were extracted from field studies for validation.

Author Contributions: Conceptualization, Z.-Y.J. and W.H.; methodology, Z.-Y.J., W.H., C.-M.L. and
Y.J.; software, W.H., Y.J., Y.Y., J.-H.P. and Y.-D.Z.; validation, Z.-Y.J., C.-M.L. and G.-L.H.; data curation,
Y.Y. and J.-H.P.; writing—original draft preparation, Z.-Y.J., W.H. and Y.J.; writing—review and
editing, Z.-Y.J., W.H. and Y.J.; visualization, Y.Y. and S.-Y.Z.; supervision, Z.-Y.J.; project administration,
Z.-Y.J.; funding acquisition, Z.-Y.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant No. 41901027)
and the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515012208).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank Yao-Kui Cui and Chao-Lei Zheng for assistance
with model development and data analysis and are grateful for the support of the Pearl River Delta
Forest Ecosystem Research Station. We also appreciate the handing editor and the anonymous
reviewers for their valuable comments to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/f13091404/s1
https://www.mdpi.com/article/10.3390/f13091404/s1


Forests 2022, 13, 1404 16 of 18

References
1. Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H. A review of rainfall interception modelling. J. Hydrol. 2009,

370, 191–206. [CrossRef]
2. Savenije, H.H.G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary.

Hydrol. Process. 2004, 18, 1507–1511. [CrossRef]
3. Sun, S.; Xiang, W.; Ouyang, S.; Hu, Y.; Zhao, Z.; Xu, X.; Yue, K.; Chen, L.; Zeng, Y.; Lei, P.; et al. Higher canopy interception

capacity of forests restored to the climax stage in subtropical China. Hydrol. Process. 2022, 36, e14538. [CrossRef]
4. Yue, K.; De Frenne, P.; Fornara, D.A.; Van Meerbeek, K.; Li, W.; Peng, X.; Ni, X.Y.; Peng, Y.; Wu, F.Z.; Yang, Y.S.; et al. Global

patterns and drivers of rainfall partitioning by trees and shrubs. Global Chang. Biol. 2021, 27, 3350–3357. [CrossRef] [PubMed]
5. Price, A.G.; Carlyle-Moses, D.E. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous

forest stand, southern Ontario, Canada. Agric. For. Meteorol. 2003, 119, 69–85. [CrossRef]
6. Llorens, P.; Domingo, F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J.

Hydrol. 2007, 335, 37–54. [CrossRef]
7. Ringgaard, R.; Herbst, M.; Friborg, T. Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy

structure, local and regional advection. J. Hydrol. 2014, 517, 677–690. [CrossRef]
8. Van Dijk, A.; Gash, J.H.; van Gorsel, E.; Blanken, P.D.; Cescatti, A.; Emmel, C.; Gielen, B.; Harman, I.N.; Kiely, G.; Merbold, L.;

et al. Rainfall interception and the coupled surface water and energy balance. Agric. For. Meteorol. 2015, 214, 402–415. [CrossRef]
9. Návar, J. Modelling rainfall interception loss components of forests. J. Hydrol. 2020, 584, 124449. [CrossRef]
10. Wang, D.; Wang, L.; Zhang, R. Measurement and modeling of canopy interception losses by two differently aged apple orchards

in a subhumid region of the Yellow River Basin. Agric. Water Manag. 2022, 269, 107667. [CrossRef]
11. Crockford, R.H.; Richardson, D.P. Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground

cover and climate. Hydrol. Process. 2000, 14, 2903–2920. [CrossRef]
12. Dunkerley, D. Measuring interception loss and canopy storage in dryland vegetation: A brief review and evaluation of available

research strategies. Hydrol. Process. 2000, 14, 669–678. [CrossRef]
13. Wang, D.; Wang, L. Canopy interception of apple orchards should not be ignored when assessing evapotranspiration partitioning

on the Loess Plateau in China. Hydrol. Process. 2018, 33, 372–382. [CrossRef]
14. Cuartas, L.A.; Tomasella, J.; Nobre, A.D.; Hodnett, M.G.; Waterloo, M.J.; Múnera, J.C. Interception water-partitioning dynamics

for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. Agric. For. Meteorol. 2007, 145,
69–83. [CrossRef]

15. Zimmermann, A.; Zimmermann, B. Requirements for throughfall monitoring: The roles of temporal scale and canopy complexity.
Agric. For. Meteorol. 2014, 189, 125–139. [CrossRef]

16. Rutter, A.J.; Morton, A.J.; Robins, P.C. A predictive model of rainfall interception in forests II: Generalization of the model and
comparison with observations in some coniferous and hardwood stands. J. Appl. Ecol. 1975, 12, 367–380. [CrossRef]

17. Grunicke, S.; Queck, R.; Bernhofer, C. Long-term investigation of forest canopy rainfall interception for a spruce stand. Agric. For.
Meteorol. 2020, 292, 108125. [CrossRef]

18. Magliano, P.N.; Whitworth-Hulse, J.I.; Cid, F.D.; Leporati, J.L.; Van Stan, J.T.; Jobbágy, E.G. Global rainfall partitioning by dryland
vegetation: Developing general empirical models. J. Hydrol. 2022, 607, 127540. [CrossRef]

19. Calder, I.R. Rainfall interception and drop size-development and calibration of the two-layer stochastic interception model. Tree
Physiol. 1996, 16, 727–732. [CrossRef]

20. Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests I: Derivation of the
model from observations in a plantation of Corsican pine. J. Agric. Meteorol. 1971, 9, 367–384. [CrossRef]

21. Gash, J.H.C.; Lloyd, C.R.; Lachaud, G. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 1995, 170,
79–86. [CrossRef]

22. Pereira, F.L.; Valente, F.; David, J.S.; Jackson, N.; Minunno, F.; Gash, J.H. Rainfall interception modelling: Is the wet bulb approach
adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types? J. Hydrol. 2016, 534, 606–615.
[CrossRef]

23. Gash, J.H.C.; Wright, I.R.; Lloyd, C.R. Comparative estimates of interception loss from three coniferous forests in Great Britain. J.
Hydrol. 1980, 48, 89–105. [CrossRef]

24. Herbst, M.; Rosier, P.T.W.; McNeil, D.D.; Harding, R.J.; Gowing, D.J. Seasonal variability of interception evaporation from the
canopy of a mixed deciduous forest. Agric. For. Meteorol. 2008, 148, 1655–1667. [CrossRef]

25. Sadeghi, S.M.M.; Attarod, P.; Van Stan, J.T.; Pypker, T.G.; Dunkerley, D. Efficiency of the reformulated Gash’s interception model
in semiarid afforestations. Agric. For. Meteorol. 2015, 201, 76–85. [CrossRef]

26. Valente, F.; David, J.S.; Gash, J.H.C. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using
reformulated Rutter and Gash analytical models. J. Hydrol. 1997, 190, 141–162. [CrossRef]

27. Návar, J. The performance of the reformulated Gash’s interception loss model in Mexico’s northeastern temperate forests. Hydrol.
Process. 2013, 27, 1626–1633. [CrossRef]

28. Su, L.; Zhao, C.; Xu, W.; Xie, Z. Modelling interception loss using the revised Gash model: A case study in a mixed evergreen and
deciduous broadleaved forest in China. Ecohydrology 2016, 9, 1580–1589. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2009.02.058
http://doi.org/10.1002/hyp.5563
http://doi.org/10.1002/hyp.14538
http://doi.org/10.1111/gcb.15644
http://www.ncbi.nlm.nih.gov/pubmed/33864334
http://doi.org/10.1016/S0168-1923(03)00117-5
http://doi.org/10.1016/j.jhydrol.2006.10.032
http://doi.org/10.1016/j.jhydrol.2014.06.007
http://doi.org/10.1016/j.agrformet.2015.09.006
http://doi.org/10.1016/j.jhydrol.2019.124449
http://doi.org/10.1016/j.agwat.2022.107667
http://doi.org/10.1002/1099-1085(200011/12)14:16/17&lt;2903::AID-HYP126&gt;3.0.CO;2-6
http://doi.org/10.1002/(SICI)1099-1085(200003)14:4&lt;669::AID-HYP965&gt;3.0.CO;2-I
http://doi.org/10.1002/hyp.13330
http://doi.org/10.1016/j.agrformet.2007.04.008
http://doi.org/10.1016/j.agrformet.2014.01.014
http://doi.org/10.2307/2401739
http://doi.org/10.1016/j.agrformet.2020.108125
http://doi.org/10.1016/j.jhydrol.2022.127540
http://doi.org/10.1093/treephys/16.8.727
http://doi.org/10.1016/0002-1571(71)90034-3
http://doi.org/10.1016/0022-1694(95)02697-N
http://doi.org/10.1016/j.jhydrol.2016.01.035
http://doi.org/10.1016/0022-1694(80)90068-2
http://doi.org/10.1016/j.agrformet.2008.05.011
http://doi.org/10.1016/j.agrformet.2014.10.006
http://doi.org/10.1016/S0022-1694(96)03066-1
http://doi.org/10.1002/hyp.9309
http://doi.org/10.1002/eco.1749


Forests 2022, 13, 1404 17 of 18

29. Zhang, S.Y.; Li, X.Y.; Jiang, Z.Y.; Li, D.Q.; Lin, H. Modelling of rainfall partitioning by a deciduous shrub using a variable
parameters Gash model. Ecohydrology 2018, 11, e2011. [CrossRef]

30. Miralles, D.G.; Gash, J.H.; Holmes, T.R.H.; de Jeu, R.A.M.; Dolman, A.J. Global canopy interception from satellite observations. J.
Geophys. Res. 2010, 115, D16122. [CrossRef]

31. Ghilain, N.; Arboleda, A.; Barrios, J.M.; Gellens-Meulenberghs, F. Water interception by canopies for remote sensing based
evapotranspiration models. Int. J. Remote Sens. 2020, 41, 2934–2945. [CrossRef]

32. Zheng, C.; Jia, L. Global canopy rainfall interception loss derived from satellite earth observations. Ecohydrology 2020, 13, e2186.
[CrossRef]

33. AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of
drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [CrossRef]

34. Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of
soil moisture. Rev. Geophys. 2019, 57, 530–616. [CrossRef]

35. Jiang, Z.Y.; Yang, Z.G.; Zhang, S.Y.; Liao, C.M.; Hu, Z.M.; Cao, R.C.; Wu, H.W. Revealing the spatio-temporal variability of
evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin. J. Environ.
Manag. 2020, 262, 110310. [CrossRef] [PubMed]

36. Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote sensing techniques for soil organic carbon estimation:
A review. Remote Sens. 2019, 11, 676. [CrossRef]

37. Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote
sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [CrossRef]

38. Wu, J.; Liu, L.; Sun, C.; Su, Y.; Wang, C.; Yang, J.; Liao, J.; He, X.; Li, Q.; Zhang, C.; et al. Estimating rainfall interception of
vegetation canopy from MODIS imageries in Southern China. Remote Sens. 2019, 11, 2468. [CrossRef]

39. Gutmann, E.D. Global modelling of precipitation partitioning by vegetation and their applications. In Precipitation Partitioning by
Vegetation: A Global Synthesis; Van Stan, J.T., Gutmann, E., Friesen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020.

40. Fang, J.Y.; Guo, K.; Wang, G.H.; Tang, Z.Y.; Xie, Z.Q.; Shen, Z.H.; Wang, R.Q.; Qiang, S.; Liang, C.Z.; Da, L.J.; et al. Vegetation
classification system and classification of vegetation types used for the compilation of vegetation of China. Chin. J. Plant Ecol.
2020, 44, 96–110. (In Chinese) [CrossRef]

41. Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and
attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [CrossRef]

42. Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India
lead in greening of the World through land-use management. Nat. Sustain. 2019, 2, 122–129. [CrossRef] [PubMed]

43. Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247,
260–270. [CrossRef]

44. Zhang, X.; Yue, Y.; Tong, X.; Wang, K.; Qi, X.; Deng, C.; Brandit, M. Eco-engineering controls vegetation trends in southwest
China karst. Sci. Total Environ. 2021, 770, 145160. [CrossRef] [PubMed]

45. Gash, J.H.C. Analytical model of rainfall interception by forests. Q. J. Roy. Meteor. Soc. 1979, 105, 43–55. [CrossRef]
46. Cui, Y.K.; Jia, L. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations

at Regional Scale. Water 2014, 6, 993. [CrossRef]
47. Zeng, X.; Shaikh, M.; Dai, Y.; Dickinson, R.E.; Myneni, R. Coupling of the common land model to the NCAR community climate

model. J. Clim. 2002, 15, 1832–1854. [CrossRef]
48. Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C. On downward shortwave and longwave radiations over high altitude regions:

Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [CrossRef]
49. He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process

studies over China. Sci. Data. 2020, 7, 25. [CrossRef]
50. Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration

over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [CrossRef]
51. Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.; McVicar, T.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global

evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [CrossRef]
52. Magliano, P.N.; Whitworth-Hulse, J.I.; Baldi, G. Interception, throughfall and stemflow partition in drylands: Global synthesis

and meta-analysis. J. Hydrol. 2019, 568, 638–645. [CrossRef]
53. Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time

series. Nonlinear Proc. Geoph. 2004, 11, 561–566. [CrossRef]
54. Wen, Y.G.; Liu, S.R. Quantitative analysis of the characteristics of rainfall interception of main forest ecosystems in China. Sci.

Silva. Sinicae. 1995, 31, 289–298. (In Chinese)
55. Liu, S.R.; Sun, P.S.; Wen, Y.G. Comparative analysis of hydrological functions of major forest ecosystems in China. Chin. J. Plant

Ecol. 2003, 27, 16–22. (In Chinese)
56. Zhang, Q.; Lv, X.; Yu, X.; Ni, Y.; Ma, L.; Liu, Z. Species and spatial differences in vegetation rainfall interception capacity: A

synthesis and meta-analysis in China. Catena 2022, 213, 106223. [CrossRef]
57. Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X.H. Trends in total precipitation and frequency of daily precipitation extremes over China.

J. Clim. 2005, 18, 1096–1108. [CrossRef]

http://doi.org/10.1002/eco.2011
http://doi.org/10.1029/2009JD013530
http://doi.org/10.1080/01431161.2019.1698072
http://doi.org/10.1002/eco.2186
http://doi.org/10.1002/2014RG000456
http://doi.org/10.1029/2018RG000618
http://doi.org/10.1016/j.jenvman.2020.110310
http://www.ncbi.nlm.nih.gov/pubmed/32250793
http://doi.org/10.3390/rs11060676
http://doi.org/10.3390/rs11010048
http://doi.org/10.3390/rs11212468
http://doi.org/10.17521/cjpe.2019.0259
http://doi.org/10.1111/gcb.12795
http://doi.org/10.1038/s41893-019-0220-7
http://www.ncbi.nlm.nih.gov/pubmed/30778399
http://doi.org/10.1016/j.agrformet.2017.08.005
http://doi.org/10.1016/j.scitotenv.2021.145160
http://www.ncbi.nlm.nih.gov/pubmed/33736419
http://doi.org/10.1002/qj.49710544304
http://doi.org/10.3390/w6040993
http://doi.org/10.1175/1520-0442(2002)015&lt;1832:COTCLM&gt;2.0.CO;2
http://doi.org/10.1016/j.agrformet.2009.08.004
http://doi.org/10.1038/s41597-020-0369-y
http://doi.org/10.1016/j.agrformet.2016.11.129
http://doi.org/10.1016/j.rse.2018.12.031
http://doi.org/10.1016/j.jhydrol.2018.10.042
http://doi.org/10.5194/npg-11-561-2004
http://doi.org/10.1016/j.catena.2022.106223
http://doi.org/10.1175/JCLI-3318.1


Forests 2022, 13, 1404 18 of 18

58. Tu, L.; Xiong, W.; Wang, Y.; Yu, P.; Liu, Z.; Han, S.; Yu, Y.; Shi, Z.; Guo, H.; Li, Z.; et al. Integrated effects of rainfall regime and
canopy structure on interception loss: A comparative modelling analysis for an artificial larch forest. Ecohydrology 2021, 14, e2283.
[CrossRef]

59. Barbier, S.; Balandier, P.; Gosselin, F. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: A
review. Ann. Forest Sci. 2009, 66, 602. [CrossRef]

60. Peng, D.; Zhou, T. Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res.-Atmos.
2017, 122, 9060–9075. [CrossRef]

61. Lu, C.; Ma, L.; Liu, T.; Huang, X.; Sun, G. Quantitative response relationships between annual precipitation in China from 1951 to
2018 and its influencing factors. Hydrol. Res. 2022, 53, 766–781. [CrossRef]

62. Wang, X.; Zhang, Y.; Hu, R.; Pan, Y.; Berndtsson, R. Canopy storage capacity of xerophytic shrubs in Northwestern China. J.
Hydrol. 2012, 454, 152–159. [CrossRef]

63. Zhang, Y.; Wang, X.; Hu, R.; Pan, Y.; Paradelouc, M. Rainfall partitioning into throughfall, stemflow and interception loss by
two xerophytic shrubs within a rain-fed re-vegetated desert ecosystems, northwestern China. J. Hydrol. 2015, 527, 1084–1095.
[CrossRef]

64. Zabret, K.; Rakovec, J.; Šraj, M. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree
species in urban area. J. Hydrol. 2018, 558, 29–41. [CrossRef]

65. Song, Y.; Wang, C.; Linderholm, H.W.; Fu, Y.; Cai, W.; Xu, J.; Zhuang, L.; Wu, M.; Shi, Y.; Wang, G.; et al. The negative impact of
increasing temperatures on rice yields in southern China. Sci. Total Environ. 2022, 820, 153262. [CrossRef] [PubMed]

66. Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess
ecological responses to environmental change. Trends Eco. Evol. 2005, 20, 503–510. [CrossRef]

67. Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S. Recent change of vegetation growth
trend in China. Environ. Res. Lett. 2011, 6, 044027. [CrossRef]

68. Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau
is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [CrossRef]

69. Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [CrossRef]
70. Yan, T.; Wang, Z.; Liao, C.; Xu, W.; Wan, L. Effects of the morphological characteristics of plants on rainfall interception and

kinetic energy. J. Hydrol. 2021, 592, 125807. [CrossRef]
71. Holder, C.D.; Gibbes, C. Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrol. Sci. J.

2017, 2, 182–190. [CrossRef]

http://doi.org/10.1002/eco.2283
http://doi.org/10.1051/forest/2009041
http://doi.org/10.1002/2016JD026424
http://doi.org/10.2166/nh.2022.014
http://doi.org/10.1016/j.jhydrol.2012.06.003
http://doi.org/10.1016/j.jhydrol.2015.05.060
http://doi.org/10.1016/j.jhydrol.2018.01.025
http://doi.org/10.1016/j.scitotenv.2022.153262
http://www.ncbi.nlm.nih.gov/pubmed/35065105
http://doi.org/10.1016/j.tree.2005.05.011
http://doi.org/10.1088/1748-9326/6/4/044027
http://doi.org/10.1038/nclimate3092
http://doi.org/10.1038/ngeo2544
http://doi.org/10.1016/j.jhydrol.2020.125807
http://doi.org/10.1080/02626667.2016.1217414

	Introduction 
	Materials and Methods 
	Study Area 
	The Revised Gash Model 
	Data Preparation 
	Data Analysis 
	Model Validation 
	Analysis of Canopy Interception Variation 
	Analysis of the Environmental Factors Influencing Canopy Interception 


	Results 
	Validation of the Revised Gash Model 
	Spatial Patterns of Canopy Interception in China 
	Temporal Variation of Canopy Interception in China 
	Environmental Factors Affecting Canopy Interception 

	Discussion 
	Conclusions 
	References

